Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.04.539267

ABSTRACT

The increasing prevalence of the highly antibody-evasive Omicron sublineages increases the risk of breakthrough infections and leaves high-risk and vulnerable immunocompromised individuals with no effective options for prophylactic or therapeutic antibody treatments. Here, we report a heavily mutated anti-RBD monoclonal antibody, Acovimab, directed against a site in the receptor-binding motif (RBM) region of the CoV2 receptor-binding domain (RBD), that possesses very broad and highly potent neutralizing activity against CoV2 variants, including many Omicron variants. This antibody is derived from the IGHV1-58*01 germline sequence and possesses a relatively high level of mutation (15.5% of the VH aa sequence), which is unusual for anti-RBD antibodies. Neutralizing activity was very potent (IC50s range of 1-9 ng/ml) for early Omicron subvariants that possess an unmutated F486 residue and is retained but less potent (IC50s of 200-650 ng/ml) for more resistant Omicron subvariants which contain the F486V mutation (BA4/5, BA4.6, and BQ1.1), but is lost for the later ultra-resistant variants that contain F486S (XBB) or F486P (XBB.1.5) mutations. Based on these specificities, it is predicted that Acovimab by itself should protect against CoV2 infections other than those caused by the XBB/XBB.1.5 family. Acovimab also shows strong synergy in neutralization when combined with Sotrovimab, which neutralizes all Omicron variants, including XBB.1.5. Plasma from subjects with hybrid immunity (induced by vaccination + infection) possessed low levels of XBB.1.5 RBM-targeting plasma-neutralizing antibodies, and these also neutralized synergistically when combined with Sotrovimab. These results suggest potentially novel immunotherapeutic options for treating most of the CoV2 variants responsible for current infections.


Subject(s)
COVID-19 , Breakthrough Pain
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.26.538488

ABSTRACT

Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.28.534602

ABSTRACT

Development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. Current strategies for developing pan-coronavirus countermeasures have largely focused on the receptor binding domain (RBD) and S2 regions of the coronavirus Spike protein; it has been unclear whether the N-terminal domain (NTD) is a viable target for universal vaccines and broadly neutralizing antibodies (Abs). Additionally, many RBD-targeting Abs have proven susceptible to viral escape. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees using multiplexed panels of uniquely barcoded antigens in a high-throughput single cell workflow to isolate over 9,000 SARS-CoV-2-specific monoclonal Abs (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. We observed many instances of clonal coalescence between individuals, suggesting that Ab responses frequently converge independently on similar genetic solutions. Among the recovered antibodies was TXG-0078, a public neutralizing mAb that binds the NTD supersite region of the coronavirus Spike protein and recognizes a diverse collection of alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy chain-dominant binding pattern seen in other NTD supersite-specific neutralizing Abs with much narrower specificity. We also report the discovery of CC24.2, a pan-sarbecovirus neutralizing mAb that targets a novel RBD epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 provides protection against in vivo challenge with SARS-CoV-2, suggesting potential future use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.13.484037

ABSTRACT

Many neutralizing antibodies (nAbs) elicited to ancestral SARS-CoV-2 through natural infection and vaccination generally have reduced effectiveness to SARS-CoV-2 variants. Here we show therapeutic antibody ADG20 is able to neutralize all SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize all VOCs, albeit with reduced potency against Omicron. Thus, this highly conserved and vulnerable site can be exploited for design of universal vaccines and therapeutic antibodies.


Subject(s)
Neoplasms by Site
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.04.479488

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.


Subject(s)
Severe Acute Respiratory Syndrome
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.08.459480

ABSTRACT

SUMMARY The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1–7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10–13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14–18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL